Non-canonical functions of the tuberous sclerosis complex-Rheb signalling axis
نویسندگان
چکیده
The protein products of the tuberous sclerosis complex (TSC) genes, TSC1 and TSC2, form a complex, which inhibits the small G-protein, Ras homolog enriched in brain (Rheb). The vast majority of research regarding these proteins has focused on mammalian Target of Rapamycin (mTOR), a target of Rheb. Here, we propose that there are clinically relevant functions and targets of TSC1, TSC2 and Rheb, which are independent of mTOR. We present evidence that such non-canonical functions of the TSC-Rheb signalling network exist, propose a standard of evidence for these non-canonical functions, and discuss their potential clinical and therapeutic implications for patients with TSC and lymphangioleiomyomatosis (LAM).
منابع مشابه
Activation of Rheb, but not of mTORC1, impairs spine synapse morphogenesis in tuberous sclerosis complex
Mutations in the Tsc1 or Tsc2 genes cause tuberous sclerosis complex (TSC). Tsc1 and Tsc2 proteins form a complex that inhibits mammalian target of rapamycin complex 1 (mTORC1) signalling through Rheb-GTPase. We found that Tsc2(+/-) neurons showed impaired spine synapse formation, which was resistant to an mTORC1 inhibitor. Knockdown of mTOR also failed to restore these abnormalities, suggestin...
متن کاملThe Rheb family of GTP-binding proteins.
Rheb proteins represent a novel and unique family of the Ras superfamily GTP-binding proteins that is conserved from yeast to human. Biochemical studies establish that they bind and hydrolyze GTP. Molecular modeling studies reveal a few structural differences between Rheb and Ras, which may suggest that residues involved in biochemical activities differ between the two G-proteins. The function ...
متن کاملTuberous Sclerosis Complex Gene Products, Tuberin and Hamartin, Control mTOR Signaling by Acting as a GTPase-Activating Protein Complex toward Rheb
BACKGROUND Tuberous Sclerosis Complex (TSC) is a genetic disorder that occurs through the loss of heterozygosity of either TSC1 or TSC2, which encode Hamartin or Tuberin, respectively. Tuberin and Hamartin form a tumor suppressor heterodimer that inhibits the mammalian target of rapamycin (mTOR) nutrient signaling input, but how this occurs is unclear. RESULTS We show that the small G protein...
متن کاملA complex interplay between Akt, TSC2 and the two mTOR complexes.
Akt/PKB (protein kinase B) both regulates and is regulated by the TSC (tuberous sclerosis complex) 1-TSC2 complex. Downstream of PI3K (phosphoinositide 3-kinase), Akt phosphorylates TSC2 directly on multiple sites. Although the molecular mechanism is not well understood, these phosphorylation events relieve the inhibitory effects of the TSC1-TSC2 complex on Rheb and mTORC1 [mTOR (mammalian targ...
متن کاملTherapeutic targeting of mTOR in tuberous sclerosis.
Failure in the regulation of mTOR (mammalian target of rapamycin) appears to be critical to the pathogenesis of the inherited disorder tuberous sclerosis and the related lung disease LAM (lymphangioleiomyomatosis). Both diseases are caused by mutations of TSC1 or TSC2 (TSC is tuberous sclerosis complex) that impair GAP (GTPase-activating protein) activity of the TSC1-TSC2 complex for Rheb, lead...
متن کامل